Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Eur J Hum Genet ; 30(8): 908-914, 2022 08.
Article in English | MEDLINE | ID: covidwho-2277999

ABSTRACT

SARS-CoV-2 infected a large fraction of humans in the past 2 years. The clinical presentation of acute infection varies greatly between individuals, ranging from asymptomatic or mild to life-threatening COVID-19 pneumonia with multi-organ complications. Demographic and comorbid factors explain part of this variability, yet it became clear early in the pandemic that human genetic variation also plays a role in the stark differences observed amongst SARS-CoV-2 infected individuals. Using tools and approaches successfully developed for human genomic studies in the previous decade, large international collaborations embarked in the exploration of the genetic determinants of multiple outcomes of SARS-CoV-2 infection, with a special emphasis on disease severity. Genome-wide association studies identified multiple common genetic variants associated with COVID-19 pneumonia, most of which in regions encoding genes with known or suspected immune function. However, the downstream, functional work required to understand the precise causal variants at each locus has only begun. The interrogation of rare genetic variants using targeted, exome, or genome sequencing approaches has shown that defects in genes involved in type I interferon response explain some of the most severe cases. By highlighting genes and pathways involved in SARS-CoV-2 pathogenesis and host-virus interactions, human genomic studies not only revealed novel preventive and therapeutic targets, but also paved the way for more individualized disease management.


Subject(s)
COVID-19 , COVID-19/genetics , Genome-Wide Association Study , Genomics , Humans , Pandemics , SARS-CoV-2/genetics
2.
Curr Opin Immunol ; 72: 87-93, 2021 10.
Article in English | MEDLINE | ID: covidwho-1187725

ABSTRACT

Over the past few years, genome-wide association studies (GWAS) have been increasingly applied to identify host genetic factors influencing clinical and laboratory traits related to immunity and infection, and to understand the interplay between the host and the microbial genomes. By screening large cohorts of individuals suffering from various infectious diseases, GWAS explored resistance against infection, natural history of the disease, development of life-threatening clinical signs, and innate and adaptive immune responses. These efforts provided fundamental insight on the role of major genes in the interindividual variability in the response to infection and on the mechanisms of the immune response against human pathogens both at the individual and population levels.


Subject(s)
Disease Susceptibility/immunology , Genetic Predisposition to Disease , Genome-Wide Association Study , Infections/etiology , Animals , Biomarkers , Disease Resistance/genetics , Disease Resistance/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity/genetics , Immunity/immunology
SELECTION OF CITATIONS
SEARCH DETAIL